Referance answer of Lecture 5
Example 5.2

Fine the bound of solution for the IVP ¥’ = (£, x) = —(1+ x*)x+ ¢ , 1(0) = & without solving

the equation.
Proof:Let
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From the continuation theorem we know that x = \/T/ <o V=20

Remark5.8 You may prove Theorem 5.5 with /.
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= (—00,+0) by Gronwall’s inequality.
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Then from X' = A(H)x+ (£ = x(7) = X(2,) + j [A($)2(5) + 4())ds

= w0l < |t + [ [ A4 e() + )| s
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Then use the Gronwall’s inequality we get
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Contradiction.
So we have @, = +00.
Similarly we get @w_ =—00.

This completes the proof.



